Summary Report, Breakout Introduction and Breakout Groups

for the

DOE National Bioenergy Center

Strategic Partnerships Workshop

April 11 - 12, 2001

Colorado

Meeting of Combined Federal Laboratory Capabilities

- 95 attendees:
 - 31% USDA ARS, FS, OEPNU (representatives from 17 labs and sites)
 - 5% EPA (DC and lab representative) and invited guests (Hon. Mark Udall, CO)
 - 64% DOE DC program, field and regional structure, and 10 of its labs (including 20% involved with the technical workshop organization from NREL and ORNL)
- Workshop format
 - Background book of DOE and USDA FY01 R&D program presentations, Biomass R&D Board Strategic Plan (see http://www.bioproducts-bioenergy.gov) and related materials from EPA were distributed ahead of time -- 180 pages coverina
 - DOE's biopower, biofuels, agriculture and forest products, and energy biosciences: \$141 million
 USDA's in-house programs on biobased products bioenergy and grant programs: \$91 million
 (an additional \$150 million facilitates commodity grain use for expanded biofuels production)

 - Round table panel with program managers/leaders
 - Laboratory capabilities presentations (USDA/ARS, FS; DOE and EPA)
 - Inventory of FY98 federal programs and examples of ongoing partnerships
 - Breakout sessions on

 - Identify near term gaps in current programs and partnership opportunities
 Identify key scientific and technological challenges and partnership opportunities

R&D Gaps and Needs Identified

- Biomass Systems Integration
- Biomass Systems Analyses
- Technology
 - Feedstocks R&D
 - Conversion R&D
 - Products R&D
- Social Research
- Science
- Facilitating Market Development
- Education and Outreach
- Partnerships/Technology Transfer

Some GAPS in existing programs

(based on background presentations & participants' knowledge)

> Some **NEEDS** identified

(program areas were not fully reviewed)

Biomass Systems Integration Gaps

- Integration of residue collection and plant production with conversion to products and energy
 - Demonstration and systems research including technical, economic, environmental, and ecological performance data over time to provide/validate life cycle data estimates.
- Infrastructure gap in the feedstock supply chain involving harvesting (or residue collection), transportation, densification, sorting, merchandizing
 - Cost reduction of delivered feedstock to processing plant site. Develop and validate models and tools for estimating feedstock cost delivery at various distances.
- Use and develop computational tools to better understand biomass systems

Biomass Systems Analyses Gaps

- Evaluate product performance, life cycle analysis, and environmental footprint compared to competing products.
 - Technical and and economic analyses of all cycle elements
 - Life cycle and environmental footprint analyses of all inputs and outputs
 - Benefits to energy supply increase, security, and diversity; economic development (including to farmers); quality of life and sustainability
- Develop tools to understand biobased products and bioenergy market dynamics and identify drivers leading to market penetration
 - Market dynamics and competition with existing production systems
 - Product/energy market penetration
- Understand biobased products and bioenergy linkages at global, regional and local scales with respect to environmental and ecological impacts.
 - Understand carbon, nitrogen, and key nutrient cycles
- Update tools and databases for federal partners working with industry in the selection of the federal R&D product portfolio.

Technology Gaps - Feedstocks

- Establish and maintain a broad access feedstock availability and properties database
- Identify target markets and develop welldefined and public plans for use of genetically modified organisms
- Understand and control feedstock properties and conversion technology needs

 - density cost effective densification
 - composition and change with storage conditions.....

Technology Conversion R&D Gaps

- Process monitoring and control
- Technologies that benefit multiple pathways
- New composition analysis tools (fast, inexpensive, rugged)
- Data base on industrial enzyme systems -- structure and function
- Accelerate development of small scale biopower units that use agriculture and forestry residues

Significant progress made to date but...

- · Missing fundamental understanding still hinders technological progress
- Breakthroughs needed in many areas

Technology Gaps - Products

- Develop new cost-effective products using inherent biomass properties and design biomass for products
- Models and databases for identification of product opportunities (includes economics and life cycle) with industry
- - Increase emphasis on other oxygenates in addition to ethanol
- New and expanded bioproducts (many classes possible)
 - Organic pesticides, bioremediation products
 - Non-woven products, activated carbon uses
 - Fertilizers and additives (soil amendments)
 - Syngas as chemical intermediate Pharmaceuticals and nutraceuticals
 - Lubricants, epoxies, coatings, adhesives, etc.
 - Building products with improved durability and performance
 - Explore aquatic plants as source of targeted bioproducts
- Molecular modeling of biomass and components

Integrated research from plant science to products critical

Social Research Gaps

- Understanding the social value and perception related to bioenergy and biobased products
- Understanding effects of new products may have on displacing markets for existing agriculture and forestry products

Science Needs

What is needed to accelerate progress in bio areas?

- Enhanced knowledge of fundamental plant physiology, of cellular biology, of cellular enzymes and their functions, and of the controlling mechanisms in plants
- · Improved functional properties of biomaterials to meet future needs
- Maintaining high-value uses of biopolymers, lipids, extractives, etc.
- Analytic tools to identify viable opportunities for both commercial and societal impacts
- Ability to employ flexible chemical, thermochemical, & biological processes
- Tools to shorten cycle time for developing new commodity crops and strains
- Novel approaches to separation and pretreatment
- Life cycle analyses of both ecosystems and processes

• Molecular biology Science frontiers to watch

- · Information technologies
- chemical and biological
- · Chemical sciences
- · Molecular design -
- In silico Biology · Computational modeling
- · Robotics and automation to improve crop production, harvesting, molecular biology, genetic screening, combinatorial screening, etc.
- Sciences of complex systems (biology/industry)

Facilitating Market Development - Needs

- Standards and labels
 - Bioproducts substituting petrochemicals are forced to use inappropriate standards (e.g., petroleum lubricants, ash from coal versus biomass and coal ash) - currently a barrier
 - New products may require new standards and labels to indicate environmental benefits - definitions and life cycle analysis will be needed - lack of standards/labels is a barrier
- Verification/certification of product performance
 - Independently verified performance of technologies and products can accelerate permitting and marketing
 - EPA's Environmental Technology Verification Program could facilitate commercialization of small biopower system
- Government purchases can reduce barriers to commercialization

Education and Outreach Needs

- Targeted public education and outreach
- Continue education and outreach within agencies and across agencies on biobased products and bioenergy
- Increase coordination across agencies
- K-12 education
- Multidisciplinary undergraduate and graduate education including biomass systems (continuity essential)

13

Partnerships Work Well When

- Each partner's contribution is recognized, valued, and documented in presentations and publications
- Coordinated planning occurs annually or more frequently
- Ideas, results, and problems are discussed frequently by phone and e-mail
- Papers and reports are co-authored by staff from all partner groups and are encouraged by management
- \$\$ greatly helps -- joint proposals, subcontract/IAG with in-kind cost-share work. Jointly defined work without exchange of \$\$ also works
- TRUST e.g. graduate school pals often collaborate though at different institutions

More than 50 partnerships were highlighted by the participants in a one hour brainstorming session highlighting these positive features.

1

Examples of Partnerships Proposed at the Meeting

- DOE & FS project using forest thinnings to power a small modular system
- NREL & ARS collaborating to share corn germplasm and analytical capabilities
- USDA & EPA working together to develop and test bioproducts with superior properties to replace petrochemicals
- ARS and NREL collaborating on developing micro-organisms for pretreatment and enzymes
- ORNL and ARS collaborating on separations using unique membranes
- Increase involvement of EPA with USDA and DOE in Life Cycle Analysis
- Integrate FPL and DOE efforts on advanced housing; use of renewables in construction, advances in energy efficient techniques
- Greater use of USDA repositories for microbes and plants by DOE programs
- Greater collaboration between USDA, EPA and DOE on biodiesel development and testing
- Formal dialogue between National Forest managers, Research foresters, and DOE on bioenergy and forest management
- Regular meetings between USDA ARS and FS laboratories
- Joint project reviews by DOE/USDA

Many ideas for improving management of partnerships across and within laboratories

Future Steps

- Draft Presentation Report Distributed to All Participants for Comments on 4/27/01
- Report from Workshop June
 - Workshop report and Appendices:
 - Background material electronic (already distributed as hard copy)
 - Presentations at meeting electronic
 - Agenda and Participants
- Capabilities Statements Architecture June
 - Review by participants
 - Web posting at http://www.bioproducts-bioenergy.gov/
- Questionnaire May
 - Follow up meetings -- more detailed technical? Same level? Where?
- 5th Biomass Conference of the Americas September
- Session with academia and industry- at Orlando, Florida, 9/20-21/01 http://alpha.fsec.ucf.edu/bioam/

10

Breakout Introduction Strategic Partnerships Workshop Hosted by DOE National Bioenergy Center April 11-12, 2001 Lakewood, Colorado Fostering the Bioeconomic Revolution . . . in Biobased Products and Bioenergy or Entironmental Approach Approach Approach To the Bioeconomic Revolution . . . in Biobased Products and Bioenergy or Entironmental Approach Approach To the Bioeconomic Revolution . . . in Biobased Products and Bioenergy or Entironmental Approach Approach To the Bioeconomic Revolution . . . In Biobased Products and Bioenergy or Entironmental Approach Approach To the Bioeconomic Revolution . . . In Biobased Products and Bioenergy or Entironmental Approach Approach Approach Approach To the Bioeconomic Revolution . . . In Biobased Products and Bioenergy or Entironmental Approach Approach Approach Approach Approach To the Bioeconomic Revolution . . . In Biobased Products and Bioenergy or Entironmental Approach Approach Approach Approach To the Bioeconomic Revolution . . . In Biobased Products and Bioenergy To the Bioeconomic Revolution . . . Approach Approach Approach Approach To the Bioeconomic Revolution . . . In Biobased Products and Bioenergy To the Bioeconomic Revolution . . . Approach Approach Approach Approach Approach Approach To the Bioeconomic Revolution . . . In Biobased Products and Bioenergy To the Bioeconomic Revolution . . . Approach Ap

Strategic Plan Examples of 2010 Technology Development Milestones

- Halve the year 2000 cost of producing sugars from lignocellulosics
- Develop technologies for cost-competitive biomass gasification platforms for both power and biorefinery coproducts
- Develop 250 new biobased products for commercialization. This number includes at least 20 high-energy use impact products

19

Strategic Plan Examples of 2002 Technology Development Milestones

- Demonstrate integrated commercial scale facility for multiple products
- · Review environmental and ecosystem monitoring
 - federal, state, and local governments forestry, agriculture, and environmental agencies and private sector and non-government organizations
- · Develop tools and information resources
 - facilitate identification of biobased products and bioenergy technologies that provide economic, agricultural, energy and environmental benefits simultaneously
 - produce a plan to accelerate their development...
- · Complete inventory of public resources and facilities

20

Strategic Plan Goal 7. Facilitate tripling of emerging biobased products and bioenergy Consistent with federal resource conservation and environmental policies

- Cofiring in 5% pulverized coal boilers by 2005?
- Triple biofuels production by 2010.
- 250 new biobased products...20 high energy impact by 2010.

GAPS 2

- Are there near term pathways not explored? (examples of technologies)
- Resources not explored (animal residues, crop residues, other?)
- Program linkages that should be strengthened? (environment, ecological data?)

PORTFOLIO

- Is the overall government program robust to reach this goal?
- Is the overall government program robust to develop the science and technology for the future?

2

Strategic Plan Goal 4: Foster innovation-driven science of biomass feedstocks, biobased products, and bioenergy and quickly incorporate these scientific results in the relevant technology development activities (Second day discussion)

- Evaluate the federal, state and private sector biobased products R&D portfolio to identify gaps in frontier science and technology (every two years)
- Identify R&D issues that would greatly benefit from dedicated Centers of Excellence attention and, where appropriate, extend existing or develop new program that address key challenge areas

2

Desired Outcomes for the First Breakout

GAPS

- Are there near term pathways not explored? (examples of technologies and products' categories)
- Resources not explored (animal residues, crop residues, other?)
- Program linkages that should be strengthened? (environment, ecological data?)

PORTFOLIO

- Is the overall government program robust to reach the tripling goal?
- Is the overall government program robust to develop the science and technology for the future?

22

Desired Second Breakout Outcomes

- Identify key scientific and technological challenges
- · Idenfity key options for partnering
- How to accelerate the time for technology development with incorporation of basic science developments and breakthroughs?
- How to identify scientific frontiers that will impact this area?

24

Breakout Session Reports Strategic Partnerships Workshop April 11-12, 2001

Hosted by the DOE National Bioenergy Center
Helena Chum, NREL and Lynn Wright, ORNL, Co-Chairs
Gene Petersen & Joe Bozell, NREL and Brian Davidson, ORNL,
Posters/Capabilities Input Co-Chairs
Merwin Brown, NREL, Overall facilitation

DRAFT

Breakout Group 1

Near Term Gaps and Partnerships Steve Kelley, NREL Facilitator Janet Cushman, ORNL Scribe Susan LeVan-Green, FPL Rapporteur

Key Challenges - Prioritized

- Infrastructure issues cost of collection, harvesting, and transportation
- Analyses
 - evaluate energy, fuels, markets, products impacts versus competing products
- Feedstock R&D
- Social issues
 - use of genetically modified organisms (GMO), understanding of environmental and ecological issues and public perception
- Partnerships and Technology Transfer
- Conversion Research

Group

Infrastructure Issues - Priorities

- Feedstock supply infrastructure harvest, collection, transportation - to reduce costs
- Training of new professionals with diverse backgrounds.

Other issues identified:

- Understand implications of rapid increase in ethanol production
- Infrastructure to support bioenergy development
- •Agricultural and wood fiber sorting/merchandizing center

Group 1

Analyses Issues - Priorities

- Impact of use of biomass versus traditional products
 - Evaluate product performance, life cycle, environmental footprint
 - Economic and market dynamics
 - Systematic overview of implications
 - Linkages with global climate change

Other topics identified:

- Biorefinery life cycle tools
- •Economic analysis of new products and technologies

Feedstocks - priority issues

- Data base of feedstock properties broadly accessible
- GMO test and evaluation of safety
- Address public perception and set public policy to minimize concerns

Other issues identified:

- Understand landowner decision making process
- · Densification of biomass
- Marine feedstocks
- Hazard communications for animal residues

Social Issues - Priorities

- Understanding of social values and public perception related to bioenergy and bioproducts
- Public education and outreach
 - Advantages of biomass, bioenergy, and biobased products versus fossil fuel equivalent products

Group 1

Partnerships and Technology Transfer Issues - priorities

- Support small businesses most willing to take high risks
 - new technology commercialization reduce technical risk (innovative grants)
 - support commercialization risk reduction e.g., revolving loans and other methods
- Monitor and understand international R&D
- Understand private industry R&D
- Understand and modify key regulations to accelerate new technology implementation

Group 1

Conversion Issues

- Process monitoring and control
- Technologies dealing with multiple feedstocks
- New compositional analysis tools

Other topics identified

- Accelerate small scale biopower units development that use ag and forest residues
- Alternative fuels other than ethanol
- Process intensification (multiple unit operations in one)
- Use municipal solid waste and animal residue
- Understand waste generation from bioenergy facilities
- High throughput anaerobic digestion systems

Group 1

Policy Issues registered

- Risk sharing and investment buy down
- Domestic and international marketing
- Landowners decisions
- Policies of residue collection and use
- Non-market tools (such as credits for green products/energy)
- Duration of policy commitment
- Incentives for large and small companies

24

Examples of Outstanding Partnerships

- Housing with FPL, HUD, FEMA, National Association of Home Builders
 - new more energy efficient & durable homes
 - in-kind support
 - educational vehicle for builders and training tool
- ARS Peoria oil encapsulation technologies
 - Licensing of intellectual properties to "Fantesk" for a variety of companies in specific fields of use

Group 1

Examples of Outstanding Partnerships - conf

- PNNL Industry CRADA (funds in)
 - Industry need addressed by lab to successful implementation
- Researcher-to-Researcher partnerships

(usually based on prior common educational experience)

- NREL and SRS applications of Near IR to solid wood properties prediction
- ORNL and SRS wood chips storage
- ORNL and industry dues paying cooperative for short rotation wood research
- Partnerships resulted from OIT calls
 - IPST and LBNL lab had laser technology used for on line evaluation of paper properties
- ARS West/Industry to help move product to market - lot of recognition

Breakout Group 2

Science and Technology Challenges and Partnerships Robin Graham, ORNL Facilitator Joe Bozell, NREL, Scribe Tom Jeffries, FPL, Rapporteur

Technological challenges

- Techno-economics to guide selection
- Transportation
- Innovative pretreatments/separation
- Cutting out process steps (process intensification or consolidated processing)
- Maintain and maximize value (cascade of uses)
- Push the limits of plant and microbial systems
- Commodity products besides energy or ethanol

Group 2

Technological challenges (cont)

- Rapidly identify and propagate desirable traits in trees
- Identify and develop a gymnosperm model for genetic studies
- Improve genomic information
- Much better knowledge of how to manipulate plant genetics, physiology and biochemistry and integrate this knowledge with informatics

Group 2

Techno-Economics to Guide Selection

- Identify natural drivers and barriers
- Better grasp of actual costs
- Better use of economic tools
- Improve industry/partnerships and better handling of intellectual property
- Better market analysis from micro and macro perspectives

Group 2

Transportation

- Microscale processing
- Concentration at the farm or local level
- Low cost ways of pelletizing or baling

Group 2

Innovative pretreatments and separation

- Need innovative pretreatments (breakthroughs)
- Cut out as many processing steps as possible (process intensification or consolidated processing)
- Produce high value products
- Integrate upstream and downstream processing
- Tailor feedstocks (plants) to conversion process system

Commodity products in addition to energy or ethanol

- Think in terms of function rather than materials
- Identify new products; don't copy existing products
- Try to use or engineer highest value in the feedstock

Supplement/complement petroleum-derived products based on inherent biomass properties

Group 2

Pushing the limits of plant or microbial systems

- What would happen if we get rid of or modify lignin? Cellulose? Hemicellulose? Etc...
- How far can we push the compositional elements?
- How can we modify the gross properties of wood
 - Strength, branching, extractives
- Engineer plants for increased lipid production
 - Producing the products themselves
 - Lipids, plastics, enzymes in cell walls

Group 2

Accelerating technology development and implementation

- Test or demonstration farms with regional processing centers
- Interagency field stations
- Make use of county agent and forest contacts

Group 2

Identifying Scientific frontiers

- Computational biology to build on existing trends
 - Genomics
 - Proteomics
 - Structural biology
 - Better understanding of complex systems
 - Metabolic engineering of biochemical and regulatory pathways
 - Develop specific tools for renewable biomaterials and bioenergy
 - Integrating biomass supply with ecological and economic models
- Merging nanotechnologies with biological systems
- Robotics and automated systems in cropping and processing systems

Group 2

Partnerships

- Regular meetings between USDA ARS and FS laboratories
 - To facilitate coordination of activities
 - Make better use of facilities
 - Address overlapping areas in biomass utilization, supply
- DOE assist in USDA project reviews and vice versa
- Joint solicitations that require joint collaboration
 - Need to work out details for funding appropriation
- CRADA provisions that are more amenable to partnerships

47 Group 2

Partnerships (2)

- Improve formal partnerships between National Forest System/State and regional with US DOE for large scale utilization of overstocked stands
- Formal dialog on bioenergy, bioproducts and forest management
- Advanced housing partnership
 - Involve FPL/FS materials development with US DOE energy efficient housing efforts
- Employ professional societies for developing partnerships

Partnerships (3)

- Share templates for successful collaboration
- Promote regional collaborations for regional products
- Links with land grant universities to increase students and academics collaborating with ARS and DOE laboratories
- Encourage the use of USDA repositories for plant and microbial collections

9 Group 2

Needs

- Multidisciplinary teams
- Understand demand/supply -- "Don't try to push a rope"
- Total life cycle analysis for assessment and analysis to avoid unintended consequences of implementation of specific pathways
- Broad education for careers in renewables, biotechnology, biology, chemistry, chemical engineering, and foster systems approaches and integration.

Near-Term Gaps and Partnerships Marilyn Brown, ORNL, Facilitator David Johnson, NREL, Scribe Carol Purvis, EPA, Rapporteur

Overall Major Challenges

- Biomass Systems Integration
 - Production of feedstock or use of residue,
 - Conversion system to product/energy
 - Integration with use
- Biomass Systems Analyses
 - Life Cycle
 - Economics
 - Environmental/Ecological
- Certification/Verification/Market Enablers

Group 3

Current Gaps

- Technical Systems Integration
 - Residue and its use
 - Demonstrations still needed in selected area
 - Biomass handling there are still issues
- Market Development/Commercialization
- Life Cycle Analyses
- Optimization of feedstock/product
- Systems Analyses
 - interaction between bioproducts and commodities as they affect feedstock economics, both supply and secondary effects on employment and processing

Gr

Technical System Integration

- Beginning to end (more than cradle to grave -- the cradle has to be built)
 - Plant science to production and harvesting
 - Conversion to product/energy
 - Use of product/energy
- Possible areas
 - Performance testing
 - Standards
 - Market integration
 - Life cycle analysis
 - Include non-market benefits and inter-commodity effects
 - Feedstock optimization (cascade of uses)

Group 3

Residue Utilization

- Crops
- Market value
- Availability (surveys?)
- "Mental Infrastructure" initially used to describe farmers who need to be part of the effort
- Large scale trials needed
- Animal Biosolids (new title for animal wastes)
 - Environmental problem and big opportunity
- Forest
- Fire management plan
- Excess biomass produced than used
- Timber stand improvement
- Brush removal and use
- Logging residues for multiple products
- 55 Municipal Solid Waste (?)

Group 3

Small Biopower Plants for Residue Use

- Technology gasification/gas cleaning/ engines or turbines
- Ongoing activities need
 - Coordination
 - Acceleration
 - Systems integration
 - biomass handling/interconnection
 - Economic/system/life cycle analysis
 - Verification/certification procedures (a possible role for EPA's Environmental Technology Verification Program)

Bioproducts - some gaps

- Oxygenates
- Mustard pesticides
- Epoxies, paints, adhesives, coatings
- Lubricants (such as from soy and cotton seed)
- Bioremediation products
- Activated carbons and alternative fibers
- Syn gas derived chemicals
- Alternative building materials
- Pharmaceuticals

Group 3

Bioproducts - cont

- Criteria for ranking
 - In production by 2006-2008 to impact 2010
 - fossil fuel saving
 - impact on farm income, forestry income, and rural development
 - environmental impacts
 - relative need for more research and development work
 - industry participation in development

Group 3

Other Gaps

- Other fuels and products
 - FT fuels, DME, DMM, oxygenates
 - Integration among programs (H2, MSW, etc)
 - Mixed alcohols, ...
- R&D to support market development
- Small scale processes
 - power, fuels, waste utilization, products
- Biomass handling
- Interconnects
- Certification/verification processes
- Regulations

Group 3

Partnering Opportunities

- Life Cycle Analysis
 - DOE, EPA, USDA, NIST, impacted industries
 - Current corn stover to ethanol phase II
 - Need EPA involvement
 - Bioproducts require LCA
- Greening of the government/Executive Order 13101
 - Full government partnership
 - Lead by example:
 - ARS- Beltsville use of biodiesel
 - Use of biolubricants/biocleaners

Group 3

Partnering Opportunities

- Environmental labeling, regulations, specifications
 - Require LCA information
 - Possible review of EPA Construction Guidelines for biobased products and bioenergy impacts
- Coordination of feedstock production, harvesting, and conversion
 - Need common language; set of parameters and measurements
- Education and Outreach
 - USDA, DOE, EPA, and others
- Incentives and Stimuli

Bill Apel, INEEL, Rapporteur

Key scientific and technological challenges

- Plant Science
 - Genetic engineering of cell wall
 - Bioinformatics/plant genome database mining
- Crop and tree production
 - Forest sustainability
 - Crop/soil productivity
 - Phytoremediation
- Durability and performance of biomaterials
 - Characterization
 - Reduce degradation

Group 4

Key scientific and technological challenges

- Environmental
 - Carbon sequestration
 - Durable goods and products (i.e. engineered soils)
 - Water resource synergies
- Supply engineering (harvest, collection, transport)
- Designer plants (similar to microorganisms)
 - Accelerate breeding feedstocks with specific properties such as nutraceutical value, specific chemical function (crop breeding today takes 10 years...)
- The new biorefinery
 - Flexible thermochemical processing
 - Optimization for maximum value
 - Use of small diameter trees
- Separations technologies (new and improved)

G

Current Partnering Examples

- Bioenergy feedstocks
- Capture methane from manure for turbine
- Microorganism development for ethanol
- Life cycle analysis of corn stover to ethanol
- Allocation of above and belowground biomass
- Terrestrial carbon sequestration
- Cellulase genetics
- Fiber and protein from manure

Group 4

Current Partnering Examples

- Soil carbon characterization
- New uses for corn and soybeans
- Health benefits analysis of cofiring (emission profile)
- Cofiring of willow and switchgrass
- Regulatory flexibility for cofiring

Group 4

Fostering Collaboration

- Cross group communication
 - This meeting!!!!!
 - Forest thinnings for modular systems: DOE/FS
 - Assess corn stover composition: NREL/ARS
 - Fiber properties and characterization: NREL/Forest Products
 - Conversion with microorganisms: NREL/USDA

Fostering Collaboration

- Integrated Strategic Planning
 - Anticipate societal needs before it becomes a problem. e.g., green chemicals.
 - Integrated LCA for systems with multi-agency collaborations

Group 4

Scientific Frontiers

- Designer Plants (genomic/expression/proteomics)
- Separation Science (A-Z in the process)
- LCA
- Physical manipulation of feedstock to improve quality (e.g. densification, etc.)